POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Basics of machine elements and assemblies design [N1Trans1>PPEiZM]

Course			
Field of study Transport		Year/Semester 2/4	
Area of study (specialization)		Profile of study general academic	2
Level of study first-cycle		Course offered in Polish	
Form of study part-time		Requirements elective	
Number of hours			
Lecture 18	Laboratory classe 0	es	Other (e.g. online) 0
Tutorials 18	Projects/seminars 18	5	
Number of credit points 7,00			
Coordinators		Lecturers	
dr inż. Dariusz Torzyński dariusz.torzynski@put.poznan.pl			

Prerequisites

Information from the classic notation of constructions, computer graphics, is able to develop assembly and executive documentation, can cooperate in a group while performing various roles.

Course objective

Getting to know the principles of constructing typical connections used in machine construction, the principles of building elements and assemblies of machines and methods of their design. Mastering computer-aided design tools for typical elements and assemblies of machines.

Course-related learning outcomes

Knowledge:

The student has ordered and theoretically founded general knowledge in the field of key issues of technology and detailed knowledge in the field of selected issues in this discipline of transport engineering.

The student has a basic knowledge of patents, the copyright and related rights act and the act on the protection of personal data and technology transfer, in particular with regard to transport solutions.

Skills:

The student is able - in accordance with the given specification - to design (create a model of a fragment of reality), formulate a functional specification in the form of use cases, formulate non-functional requirements for selected quality characteristics) and implement a device or a widely understood system in the field of means of transport, using appropriate methods, techniques and tools. The student is able to design elements of means of transport using data on environmental protection.

Social competences:

The student understands that in technology, knowledge and skills very quickly become obsolete. The student is aware of the importance of knowledge in solving engineering problems, knows examples and understands the causes of malfunctioning transport systems that have led to serious financial and social losses or to serious loss of health and even life.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows: Lecture exam, completion of projects and exercises.

Programme content

Basic concepts of methodologies for designing elements and assemblies of machines. Computer aided design. Getting to know the conditions and structure of the design process. Getting to know the methodology of designing bonded joints. Practical knowledge of the methodology of designing typical manual and non-coupled connections. Getting to know the methodology of designing axles, shafts, elastic elements. Designing for fatigue strength. Principles of selection of rolling and sliding bearings. Reminder of the principles of applying tolerances and fits. Designing gears and tie drives, couplings and brakes.

Course topics

Getting to know typical connections used in machine construction and drive system components, principles of building elements and assemblies of machines and methods of their design.

Teaching methods

Lecture.Multimedia presentation with examples Classes: problem solving Project: Individually assigned design task

Bibliography

Basic

- 1. Branowski B.(red) Podstawy konstrukcji napędów maszyn. WPP 2007
- 2. Osinski Z. (red) Podstawy Konstrukcji Maszyn. PWN Warszawa 2012
- 3. Praca zbiorowa pod red. M. Dietricha: Podstawy konstrukcji maszyn. Tom 3, WNT, Wa-wa, 1999
- 4. Osiński Zbigniew, Sprzęgła, PWN, Warszawa 1998
- 5. Dziama A., Michniewicz M., Niedźwiedzki A.: Przekładnie zębate. PWN, Wa-wa, 1989
- 6. Ochęduszko K.: Koła zębate, WNT 1985
- Additional

1. Krawiec P. Domek G. Przekładnie cięgnowe z pasami klinowymi. WPP 2019

2. Niezgodziński M. E., Niezgodziński T.; Wzory, wykresy i tablice wytrzymałościowe, Wydawnictwo Naukowo Techniczne, 1996

 J. Żółtowski, Podstawy Konstrukcji Maszyn, Oficyna Wydawnicza Politechniki Warszawskiej, 2002
R. Knosala, A. Gwiazda, A. Baier, P. Gendarz, Podstawy Konstrukcji Maszyn, WNT, Warszawa 2000
A. Dziurski, L. Kania, A. Kasprzycki, E. Mazanek, Przykłady obliczeń z Podstawy Konstrukcji Maszyn, Tom 1 i 2, WNT, Warszawa 2005

Breakdown of average student's workload

	Hours	ECTS
Total workload	150	7,00
Classes requiring direct contact with the teacher	54	2,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	96	4,50